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Dipole radiation in a one-dimensional photonic crystal. II. TM polarization
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As in a recent paper@I. Alvarado-Rodrı´guez, P. Halevi, and Ada´n S. Sa´nchez, Phys. Rev. E63, 056613
~2001!; 65, 039901~E! ~2002!#, we study the power emitted by an oscillating dipole in a superlattice~SL!
modeled by means of a periodic distribution of Dirac-delta functions~Dirac-combSL!. However, while in the
aforementioned paper the radiation was restricted to the transverse electric~TE! polarization mode, here we
focus our attention on the transverse magnetic~TM! mode. Employing the same methodology, again we find
that the power spectra are dominated by slope discontinuities. These occur — if at all — at the band edges for
on-axis propagation, depending on the dipole’s position and orientation. The largest enhancement or inhibition
is present for normalized frequencies such that (vd/c)&2p; here,v is the dipole frequency,c is the speed of
light in vacuum, andd is the distance between the barriers. For substantial values of thegrating strength
considerable enhancement or suppression of the radiated power~in comparison to the free-space value! is
obtained. We also find that the power emitted by a gas of randomly oriented dipoles exhibits slope disconti-
nuities at all band edges for on-axis propagation. In comparison with the TE polarization case, the TM
polarization exhibits several different qualitative features.

DOI: 10.1103/PhysRevE.66.046613 PACS number~s!: 42.70.Qs, 42.50.Gy
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I. INTRODUCTION

This paper is a sequel to the preceding one by Alvara
Rodrı́guez, Halevi, and Sa´nchez@1#. They both deal with the
radiation emitted by a dipole embedded within a model
perlattice~SL!; the first paper~denoted by I! dealing with the
transverse electric~TE! polarization component, while th
present paper is dedicated to the transverse magnetic~TM!
polarization contribution. A detailed introduction and an e
tensive list of references is given in I, so here we will lim
ourselves to only the most essential.

In I, the theory of power emission in a linear inhomog
neous medium was summarized. This theory is a class
adaptation, developed by Dowling and Bowden@2#, of the
quantum electrodynamical theory~in the Weisskopf-Wigner
approximation! of Glauber and Lewenstein@3#. The steady-
state (t5`) power radiated by a point electric dipole, osc
lating harmonically with frequencyvo , is @2#

P5p2vo
2m2E d3kuak~r0!•m̂u2d~vo2vk!. ~1!

Here,m5mm̂ is the dipole momentum,r0 is the dipole po-
sition, andak(r ) are the vector potential eigenvectors. Noti
that only those normal modes contribute to the radiated
ergy that have their eigenvaluevk equal tovo and provided
that the eigenvectorak(ro) is not perpendicular to the dipole
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momentumm. Equation ~1! applies to either polarization
and will be employed here to calculate the TM contributio

The following section recapitulates the normal modes
the Dirac-comb SL, studied in detail in Ref.@4# for TM
polarization. These modes are normalized in Sec. III, and
emitted power is calculated in Sec. IV. The results for t
two fundamental configurations—with the dipole being p
allel and perpendicular to the SL interfaces—are discusse
Secs. V and VI, respectively. The case of radiation by a
of randomly distributed and oriented dipoles is addresse
Sec. VII. The paper is brought to conclusion in Sec. VIII.

II. NORMAL MODES

In Refs. @1,2,4,5#, the Dirac-combmodel is used to rep-
resent the dielectric SL, namely,

e~x!5e01gd (
n52`

`

d~x2nd!. ~2!

Here, theg parameter is called thegrating strength, d is the
period of the SL, ande0 is the dielectric constant of the
medium between the barriers.

The magnetic induction fieldB(r ) lies in theyz plane for
the TM modes. In Ref.@4#, we expressed the magnetic in
duction in thenth region between the delta-function barrier
as

Bk
(n)~r !5Bk

(n)~x!ei (kyy1kzz)êk . ~3!

r,
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Here,êk is a unit vector in theyzplane, perpendicular to th
in-plane wave-vectorki , which forms an anglef with thez

axis. It is defined asêk52cosfŷ1sinfẑ, and Bk
(n)(x) is

given by

Bk
(n)~x!5einkBd@A0eiK (x2nd)1B0e2 iK (x2nd)#,

~n21!d,x,nd, n50,61,62 . . . , ~4!

K5Av2

c2
e02ki

2, ~5!

wherekB is the Bloch wave vector andki is the magnitude of
the projection of the wave-vectork on theyz plane, i.e.,ki

2

5ky
21kz

2 . Solving the eigenvalue problem for the Dira
comb model, we obtained that the coefficientsA0 andB0 of
Eq. ~4! are related by@4#

B05
e2 ikBd2e2 iKd~12 ia!

2 iaeiKd
A0 . ~6!

Also, the dispersion relation was found to be

coskBd5cosKd2a~K !sinKd, ~7!

a~K !5
gd

2e0
K. ~8!

Equation ~7! is an implicit equation for the frequencyvk
5v(kB ,ki). Equations~6! and~7! specify the normal mode
of the magnetic induction field. It is important to notice th
propagating solutions for the TM modes, that is, whenkB is
real, occur only ifK is real, too~unlike the TE modes, for
which K may be imaginary!.

III. MODE NORMALIZATION

In this section, a real superlattice~each cell composed o
two layersj 51,2 with dielectric constantse j and widthshj )
is first treated. Then, in Eqs.~4! and ~5! A0 , B0 , K, ande0
must be replaced byAj , Bj , K j , ande j , respectively.

The setak(r ) must satisfy the following orthonormaliza
tion condition:

E d3r e~r !ak8
* ~r !•ak~r !5d~k2k8!. ~9!

The vector potentialak(r ) is related with magnetic induction
Bk(r ) by

ak~r !5
c2

e~r !v2
¹3Bk~r !. ~10!

In the 0th cell, substituting Eq.~3! in Eq. ~10!, we obtain
04661
t

ak
( j )~r !5ei (kyy1kzz)@akx

( j )~x!x̂1akT
( j )~x!~sinf ŷ1cosf ẑ!#,

~11!

where

j 5H 1, 2d,x,2h2 ,

2, 2h2,x,0,

and we have defined

akx
( j )~x!5

c2

e jv
2

ik i@Aje
iK jx1Bje

2 iK j x#, ~12!

akT
( j )~x!52

c2

e jv
2

iK j@Aje
iK jx2Bje

2 iK j x#. ~13!

By the Bloch theorem, the normalization condition can be
to involve only the field in the celln50, namely,2d,x
,0, that is,

(
n52`

`

ein(kB2kB8 )dF E
2`

`

dyE
2`

`

dzE
2d

2h2
dx e1ak8

(1)* •ak
(1)

1E
2`

`

dyE
2`

`

dzE
2h2

0

dx e2ak8
(2)* •ak

(2)G5d~k2k8!.

~14!

Substituting Eq.~11! into Eq. ~14! and using the facts that

E
2`

`

dyE
2`

`

dzei [(ky2ky8)y1(kz2kz8)z]

5~2p!2d~ky2ky8!d~kz2kz8!,

d (
n52`

`

ein(kB2kB8 )d52pd~kB2kB8 !,

the d functions cancel out and Eq.~14! simplifies to

e1E
2d

2h2
dx~akx*

(1)~x!akx
(1)~x!1akT*

(1)~x!akT
(1)~x!!

1e2E
2h2

0

dx~akx*
(2)~x!akx

(2)~x!1akT*
(2)~x!akT

(2)~x!!

5
d

~2p!3
. ~15!
3-2
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Substituting Eqs.~12! and~13! into Eq. ~15! and integrating
we get

1

e1
H v2

c2
e1~d2h2!~ uA1u21uB1u2!

12~ki
22K1

2!ReFA1B1*
e22iK 1h22e22iK 1d

2iK 1
G J

1
1

e2
H v2

c2
e2h2~ uA2u21uB2u2!

12~ki
22K2

2!ReFA2B2*
12e22iK 2h2

2iK 2
G J

5
v4d

~2p!3c4
. ~16!
i

e

ol

al
e

04661
Applying thed limit e2h2→gd to the last equation and drop
ping the index ‘‘1’’ we get

K2

e
guA2Bu21

v2

c2
e~ uAu21uBu2!

12~ki
22K2!ReFAB*

12e22iKd

2iKd G
5

v4e

~2p!3c4
. ~17!

Then, using Eq.~6!, after considerable algebra, Eq.~17! is
reduced to
uAu25
v2

16p3c2

sinKd1a cosKd1sinkBd

S 11
2gK2c2

e2v2
2

a

KdD sinKd1S 11
2gK2c2

e2v2 D a cosKd

. ~18!
IV. TM EMITTED POWER

We consider that the medium between the barriers
vacuum, and then the field that interacts with the dipole
given by Eq. ~11! with j 51 and e151. @For a dielectric
medium (e1.1) Eq. ~11! is not valid, since one has to us
the local field#. Then we can drop the layer indexj 51. Also,
without losing any generality, we suppose that the dip
position is

r05x0x̂1y0ŷ1z0ẑ, 2d,x0,0, ~19!

and that it is parallel to thexy plane, with its orientation
represented by

m̂5sinc x̂1cosc ŷ. ~20!

Now, let us define the volume differential ink space as in
Fig. 4 of Ref.@5#,

d3k5kidfdk tdkn . ~21!

Here,dk t anddkn are the differential tangential and norm
segments of the equifrequency surface. They can be
pressed as
is
s

e

x-

dkn5
dvk

u“kvu
, ~22!

dk t5A11S ]kB

]ki
U

v
D 2

dki . ~23!

We calculateu“kvu and]kB /]ki from Eq. ~7!, and then Eq.
~21! is found to be

d3k5
vuFu

c2uK sinkBdu
kidkidfdv, ~24!

F[F11
g

2GsinKd1a cosKd. ~25!

Substituting Eq.~24! into Eq. ~1! and integrating with
respect tov then gives

P5
p2v0

3m2

c2 E dfdki kiuak~r0!•m̂U2
uFu

uK sinkBduU
v0

.

~26!
3-3
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Next, we substitute Eqs.~11!, ~19!, and ~20! into Eq. ~26!
and then integrate with respect tof. This results in

P5
2p3c2m2

v0
E dki ki

uFu
uK sinkBdu

I ~c!~ uAu21uBu2!

1J~c!2Re~AB* e2iKx0!, ~27!
ric
le

y
ly
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n

b
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I ~c![ki
2sin2c1

1

2
K2cos2c, ~28!

J~c![ki
2sin2c2

1

2
K2cos2c. ~29!

Then, using Eqs.~18! and ~6!, Eq. ~27! becomes
P5
m2v0

4 E dki ki
uFu

uK sinkBdu
I ~c!~sinKd1a cosKd!2J~c!a cosK~d12x0!

S 12
a

Kd
1

2K2c2g

v0
2 D sinKd1S 11

2K2c2g

v0
2 D a cosKd

. ~30!
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This is the final result for the power emitted by the elect
dipole. The integration is carried out in terms of a sing
variable ki for values ofkB that lie on the equifrequenc
surfacev0. There is contribution to the emitted power on
in those regions ofki wherekB is real ~in Ref. @4#, we have
plotted several equifrequency surfaces!. There are two im-
portant orientations of the dipole: when it is parallel to t
‘‘barriers’’ ( c50) and when it is perpendicular to the ‘‘ba
riers’’ (c5p/2). The power emitted for any other orientatio
of the dipole can be represented as a linear combinatio
the powers emitted for these two basic orientations, that

P~v0 ,c!5cos2cP~v0 ,c50!1sin2cP~v0 ,c5p/2!.
~31!

It is convenient to work with the normalized dipole positio
x0 /d5j0, the normalized frequencyvd/c5V, the normal-
ized components of the wave vector:kBd5kB , Kd5k,
kid5k i , and the power normalized to the power emitted
a dipole in free-spacePN5(3c3/v0

4m2)P. Using this nor-
malization scheme in Eq.~30!, we have

PN~V0,0!

5
3

8V0
3E dk i

k iuFu
uk sinkBu

3k2
sink1a cosk1a cosk~112j0!

S 11
2k2g

V2
2

a

k D sink1S 11
2k2g

V2 D a cosk

,

~32!
of

y

PN~V0 ,p/2!

5
3

4V0
3E dk i

k iuFu
uk sinkBu

3k i
2 sink1a cosk2a cosk~112j0!

S 11
2k2g

V2
2

a

k D sink1S 11
2k2g

V2 D a cosk

.

~33!

F5~11g/2!sink1a cosk, ~34!

a5gk/2. ~35!

V. DIPOLE PARALLEL TO ‘‘BARRIERS’’ „cÄ0…

In this section, we compute the normalized power
given by Eq.~32!. The power emitted by the dipole as
function of the frequency is continuous, but it presents slo
discontinuities~see Fig. 1!. We can notice that such singu
larities occur for frequencies coinciding with a band edge
ki50 ~on-axis propagation!, since the group velocity for
suchk is zero (“kv50), see Eq.~23! of Ref. @4#. These are
known as van Hove singularities or as analytical critic
points. As can be expected, the slope discontinuities
much more pronounced for the larger value of the grat
strength (g50.9). Nevertheless, for certain band-edge f
quencies atki50 the slope discontinuities are missin
Mathematically, the van Hove singularities are associa
with k i and sinkB both vanishing in the last factor of Eq
~32!, namely, a singularity of the 0/0 type.

In order to gain some understanding of the role of t
dipole-field interaction, now we analyze the case when
numerator of Eq.~32! vanishes. For on-axis propagatio
3-4
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(k i50, k5V, where we drop the subscript ‘‘0’’ henceforth!,
this occurs when

sinV

gV
52

1

2
$cosV1cos@V~112j!#%. ~36!

In Ref. @4#, it was shown that the lower band edges for o
axis propagation are defined byV5vd/c5pn, where n
5(0,1,2, . . . ) is theband index, and are thus independent
g. For such band-edge frequencies sinV50, so the condition
~36! reduces to

cos~npj!50. ~37!

This factor can be traced to the transverse part ofak(r0), Eq.
~13! ~the longitudinal part vanishes forki50). Because, un-
der the conditions consideredA52B, we see thatakT(x0) is
proportional to cos(npj). Now, in the Coulomb gauge tha
we are employing, the electric field isE(r )5 i (v/c)a(r ) @1#;
hence, the factor~37! corresponds to the electric fiel
squared in the dipole field interactionuak(r0)•m̂u2 in Eq. ~1!.
When this factor vanishes, the dipole cannot interact with
field, and then the contribution of the modeki50 to the
emitted power is zero. As a consequence, the aforementio
slope discontinuities inP(v) do not arise at the lower band
edges for on-axis propagation. The expression~37! vanishes
if uju5(2m11)/(2n), wherem50,1,2, . . . , that is, when

FIG. 1. Normalized power emitted by a dipole oriented para
to the barriers as a function of the normalized frequencyvd/c for
g50.1 andg50.9 and three dipole positions. The width of th
lower ~upper! box on the frequency axis indicates the extensions
the allowed bands forg50.1 (g50.9). ~a! For j521/2 there are
no slope discontinuities atvd/c5p(2m11), m51,2 . . . .~b! For
j521/3 there are slope discontinuities atvd/c5mp, m
51,2 . . . .~c! j521/4, there areno slope discontinuities atvd/c
52p(2m11), m50,1,2. . . .
04661
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the dipole position is given by the ratio of an odd and
even numberuju,1. For a givenj, this corresponds to the
normalized frequenciesV5pn5p(m11/2)/uju, with the
understanding that (m11/2)/uju is integer. For example, if
the dipole is located midway between two barriers,j5
21/2, we haveV5p(2m11); in Fig. 1~a!, the slope dis-
continuities are indeed absent forV5p,3p,5p,7p, . . . ,. In
the case ofj521/3, the factor~37! doesnot vanishes for
any m, and then the discontinuities are present@see Fig.
1~b!#. By using the same relation, forj521/4 the disconti-
nuities are absent whenV52p,6p,10p, . . . , as we can no-
tice in Fig. 1~c!. The absence of the aforementioned disco
tinuities is responsible for the distinctive repetitive patter
that can be seen in Figs. 1~a!, 1~b!, and 1~c!. This behavior is
a consequence of the electric field having a node at the
pole position for certain modes. Then the plots shown in F
1 follow a quasi periodic pattern whose shape is determi
by the dipole position.

In the limit g→0, Eq. ~32! can be easily integrated, re
sulting that the normalized power is a constant equal to 1
In this limit, the SL is reduced to free space and we see
the TM modes contribute 1/4 of the radiated power. Ob
ously, the rest of the normalized power, that is 3/4, is co
tributed by the TE modes. This, indeed, has been found
for c50. We then define the ‘‘enhancement’’ as (PN
20.25)/0.2554PN21, obviously for PN.0.25. If, on the
other hand,PN,0.25 then there is a ‘‘reduction’’ 124PN .

The enhancement of the normalized power is mode
for both values ofg. In Fig. 1, for g50.1, the largest en-
hancement is an increase of about 25% with respect to
space and is attained at the frequencies that correspond t
band edges. Forg50.9, the maximum enhancement is a
increase of just 10% atv50. The maximum reductions ob
tained are 85 and 30 % of the free space value 1/4 fog
50.9 andg50.1, respectively.

It can be proved that, in the limit of low frequencies,v
→0, the normalized power is a constant that depends o
on theg parameter, given by

PN~0,0!5
3~11g!3/2

4~2g1g2!
S 12

1

A2g1g2
arctanA2g1g2D .

~38!

In this long-wavelength limit, the power obviously cann
depend on the dipole’s position, the SL becoming an eff
tively homogeneous medium. To obtain the above equat
we use the fact thatk!1; thus, the following approxima-
tions can be done in Eq.~32!: cosk'1, sink'k, cosk(1
12j)'1, F'(11g)k, and sinkB'A11gk. The ensuing
definite integral, containing onlyg as a parameter, can b
solved. As a result, Eq.~38! is obtained. The normalized
power as a function of the grating strengthg increases until it
reaches its maximum valuePN'0.28 atg'1.172. This is a
small enhancement with respect to free-space value 0.25
g.1.172, the normalized power decreases, and it tend
zero asg→`. We have computed Eq.~38! for g50.9 and
for g50.1, resulting in 0.279 and 0.257, respectively, for t
normalized power. These results are in agreement with
values shown in Fig. 1.

l

f
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FIG. 2. Normalized power emitted by a dipole located close
one of the barriers (jo520.1 andjo521027) as a function of the
normalized frequencyvd/c for g50.9. The dipole is oriented par
allel to the barriers (c50). The width of box on the frequency axi
indicates the extension of the allowed bands forg50.9.

FIG. 3. Normalized power emitted by a dipole oriented perp
dicular to the barriers as a function of the normalized freque
vd/c for g50.1 andg50.9 and three dipole positions. The wid
of the lower~upper! box on the frequency axis indicates the exte
sion of the allowed bands forg50.1 (g50.9).
04661
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FIG. 4. As Fig. 2; however, with the dipole oriented perpendic
lar to the barriers (c5p/2).

FIG. 5. The normalized average power per dipole versus
normalized frequency (vd/c) for g50.1 andg50.9. The width of
the lower~upper! box on the frequency axis indicates the extens
of the allowed bands forg50.1 (g50.9). The power radiated by
the gas of dipoles is obtained by multiplying by the number
dipoles. We have slope discontinuities at all the frequencies
correspond to the band-gap edges~for on-axis propagation!.
3-6
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As the dipole approaches one of the barriers, there
further enhancement~up to 50%! of the normalized emitted
power; however, this enhancement is not related to the r
nant effect found for the TE modes~see Fig. 3 of I!. This is
shown in Fig. 2 for the dipole positionsj520.1 andj5
21027 with g50.9. This difference of behavior can be e
plained by comparing the dispersion relations of the TE a
the TM modes. In the case of TE polarization, the propa
tion modes can exhibit evanescent behavior just outside
barriers, which gives rise to the enhancement. On the o
hand, for TM polarization, such evanescent modes arenot
allowed for the Dirac-comb model.

VI. DIPOLE PERPENDICULAR TO ‘‘BARRIERS’’ cÄpÕ2

Computing Eq.~33!, we find that the functionPN(v), ~as
for c50) is continuous, but it presents slope discontinuit
~see Fig. 3!. The normalized power is strongly modified fo
not very large frequencies (V,;5p). We can see from Fig
3 that, in this range, asg increases, the power is enhanc
considerably. We recall from I that a perpendicular dipo
cannot emit TE radiation. Therefore, the enhancement r
tive to free space is simplyPN21 ~for PN.1). Forg50.9,
the greatest enhancement is about 90% forj521/2 andj
521/3, and about 80% forj521/4. On the other hand, fo
g50.1, the maximum enhancement is around 10%. The
malized power for greater frequencies (V>5p) fluctuates
around 1.00.

In Sec. V, forc50, we saw that some of the slope di
continuities arise at the band edges for on-axis propaga
For c5p/2, the slope discontinuities in the power spectru
are still present, however, they are very weak. This can
understood from the fact that, for this dipole orientation,
dipole cannot couple to the field modes for on-axis propa
tion. This is so becauseak(r0) is perpendicular to the SL axi
for ki50 @see Eq.~12!#. Mathematically, this is revealed b
the factorki in Eq. ~12!, which weakens the singularities.

Equation~33! can be easily integrated in the limitg→0,
with the result that the normalized power is equal to o
ol

lti
en
e
o

al
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This was expected since, for this orientation of the dipo
there is no contribution to the power by the TE modes
commented above.

In the limit of low frequencies (v→0), the normalized
power is again a constant independent of the dipole’s p
tion, namely,

PN~0,p/2!5
3A11g

2~2g1g2!
S ~11g!2

A2g1g2
arctanA2g1g221D .

~39!

We obtain this equation by applying the same approxim
tions described in the preceding section in Eq.~33!. For g
50.1 andg50.9, this formula for the normalized powe
gives 1.008 and 1.007, respectively. This is approximately
accord with the intercepts on thePN axis in Fig. 3. The
reason that the low-frequency result is different than Eq.~38!
for the c50 case, is that in this long-wavelength limit th
SL behaves like a uniaxial crystal~with its optical axis par-
allel to the SL axis! having form birefringence.

In Fig. 4, the normalized emitted power is shown forg
50.9 and for the dipole’s position close to the barrier (j5
20.1 andj521027). Here, we notice that the maximum
enhancement actually decreases as the dipole approache
barrier.

VII. DIPOLAR RADIATION BY A GAS

We consider a gas formed by a set of randomly orien
dipoles, which are also randomly distributed in the rang
2d,x,0, and do not interact among each other. We obt
the average, overc and j, of the power radiated by one
dipole. The squared cosines and sines ofc in Eqs.~28! and
~29! have the spatial average of 1/3 and 2/3, respectiv
The cosine function of Eq.~30!, whose argument involves
x0, averages to sin(Kd)/Kd. As a result, the average norma
ized powerP̄N(V) per dipole is
P̄N~V!5
1

8V3E dk i
k iuFu

uk sinkBu
~4k i

21k2!~sink1a cosk!2a~4k i
21k2!sink/k

S 11
2k2g

V2
2

a

k D sink1S 11
2k2g

V2 D a cosk

. ~40!
ted
g
-
r

mly
est
e-
In Fig. 5, we plot the total average power radiated per dip
versus the normalized frequency (vd/c) of oscillation. The
total power radiated by the gas is obtained simply by mu
plying by the number of dipoles. Since there is no prefer
tial orientation or localization of the dipoles, all the slop
discontinuities are present at the frequencies that corresp
to the band edges. The grating strength assumes the v
g50.1 andg50.9.
e

-
-

nd
ues

VIII. CONCLUSION

We have presented the calculation of the power emit
by a dipole for several dipole positions, for the gratin
strengthsg50.1 andg50.9, and for the two basic orienta
tions of the dipole (c50,p/2). We also presented the powe
emitted by a gas formed by randomly oriented and rando
distributed dipoles. We conclude that the effects of inter
for controlling the power emitted by a dipole occur at fr
3-7



is
c
ly

th

o
T
E
ce
ce
SL
.
r-
en
in

ga
p

ax
te

a

is-

TE

(
d

ar-
s-
TM
b-

nal
ent
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quencies that correspond to the band-gap edges~for on-axis
propagation!, since there the field-dipole interaction
strongly modified. Roughly speaking, the greatest enhan
ments or inhibitions of radiated power occur for relative
low frequencies,V is less than;5p. When the dipole is
parallel to the barriers, the effects caused by the SL on
radiation are more pronounced.

There is no remarkable power enhancement for dip
positions very close to a barrier, as was found for the
polarization modes. This is true because, according to
~7!, K must be real, so quasiresonant excitation of evanes
modes is not possible as in I. Nevertheless, such absen
evanescent modes is a peculiarity of the Dirac-comb
these modesare present in a realistic description of the SL

In the low-frequency limit, the power emitted is propo
tional to v4 as for free-space emission and it is independ
of the dipole’s position. However, it depends on the grat
strengthg and the dipole’s orientationc. The latter feature is
a manifestation of birefringence. The power emitted by a
formed by dipoles is also strongly modified, presenting slo
discontinuities at the band edges corresponding to on-
propagation. The slope discontinuities of the density of sta
and almost all the slope discontinuities ofP(v) are located
at frequencies corresponding to the band edges for on-
04661
e-

e

le
E
q.
nt
of
;

t
g

s
e
is
s

xis

propagation. Also, for fractional dipole positions certain d
continuities are absent.

The total emitted power is obtained by summing the
@Eq. ~32! of I# and the TM@Eq. ~31!# contributions

P~v,c!5PTE~v,c!1PTM~v,c!

5@PTE~v,0!1PTM~v,0!#cos2c

1PTM~v,p/2!sin2c. ~41!

Therefore, if the dipole is perpendicular to the barriersc
5p/2), the emitted radiation is entirely TM polarized an
the corresponding power is given by Eq.~33! and Figs. 3 or
4.On the other hand, for a dipole that is parallel to the b
riers (c50), the total emitted power is given by the expre
sion above in the square brackets, and it has both TE and
components. Also, for a dipole gas the total power is o
tained by adding the Figs. 4 of I and Fig. 5 of this paper.
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