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Dipole radiation in a one-dimensional photonic crystal. Il. TM polarization
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As in a recent papefil. Alvarado-Rodiguez, P. Halevi, and AdaeS. Sachez, Phys. Rev. B3, 056613
(2002); 65, 039901E) (2002], we study the power emitted by an oscillating dipole in a superlattte
modeled by means of a periodic distribution of Dirac-delta functi@isac-combSL). However, while in the
aforementioned paper the radiation was restricted to the transverse el€&ripolarization mode, here we
focus our attention on the transverse magn€fid) mode. Employing the same methodology, again we find
that the power spectra are dominated by slope discontinuities. These occur — if at all — at the band edges for
on-axis propagation, depending on the dipole’s position and orientation. The largest enhancement or inhibition
is present for normalized frequencies such thad/c) <2; here,w is the dipole frequency; is the speed of
light in vacuum, andd is the distance between the barriers. For substantial values ajrétimg strength
considerable enhancement or suppression of the radiated goweomparison to the free-space valus
obtained. We also find that the power emitted by a gas of randomly oriented dipoles exhibits slope disconti-
nuities at all band edges for on-axis propagation. In comparison with the TE polarization case, the TM
polarization exhibits several different qualitative features.
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. INTRODUCTION momentumu. Equation (1) applies to either polarization,
and will be employed here to calculate the TM contribution.
This paper is a sequel to the preceding one by Alvarado- The following section recapitulates the normal modes of
Rodrguez, Halevi, and S&hez[1]. They both deal with the the Dirac-comb SL, studied in detail in Ref[4] for TM
radiation emitted by a dipole embedded within a model supolarization. These modes are normalized in Sec. lll, and the
perlattice(SL); the first papefdenoted by ) dealing with the  emitted power is calculated in Sec. IV. The results for the
transverse electri¢TE) polarization component, while the two fundamental configurations—with the dipole being par-
present paper is dedicated to the transverse mag(#Mg¢  allel and perpendicular to the SL interfaces—are discussed in
polarization contribution. A detailed introduction and an ex-Secs. V and VI, respectively. The case of radiation by a gas
tensive list of references is given in I, so here we will limit of randomly distributed and oriented dipoles is addressed in
ourselves to only the most essential. Sec. VII. The paper is brought to conclusion in Sec. VIII.
In I, the theory of power emission in a linear inhomoge-
neous medium was summarized. This theory is a classical
adaptation, developed by Dowling and BowdéX, of the Il. NORMAL MODES
guantum electrodynamical theofin the Weisskopf-Wigner
approximation of Glauber and Lewensteif8]. The steady-
state (=) power radiated by a point electric dipole, osci
lating harmonically with frequency,, is [2]

In Refs.[1,2,4,5, the Dirac-combmodel is used to rep-
. resent the dielectric SL, namely,

oo

P=W2w§u2f d%k|ay(ro)- pl?8(wo—wi). (D) € =eptgd 3 o(x—nd). 2

Here, u=upu is the dipole momentunt, is the dipole po- Here, theg parameter is called thgrating strengthd is the
sition, anday(r) are the vector potential eigenvectors. NoticePeriod of the SL, and, is the dielectric constant of the
that only those normal modes contribute to the radiated ennedium between the barriers.

ergy that have their eigenvalug, equal tow, and provided The magnetic induction field(r) lies in theyzplane for

that the eigenvectaa(r,) is not perpendicular to the dipole the TM modes. In Ref{4], we expressed the magnetic in-
duction in thenth region between the delta-function barriers,

as
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Here, g is a unit vector in the/zplane, perpendicular to the  a{l)(r)=e! (Y kA al) (x)x+ all(x) (sin ¢y + cose2) ],
in-plane wave-vectok, which forms an angles with the z (12
axis. It is defined ag = —cosgy+singz, and B{(x) is

given by where

B(kn)(X):einde[AoeiK(X_nd)+Boe_iK(X_nd)], - 1, —d<X<—h2,
1712, —h,<x<0,
(n—1)d<x<nd, n=0,*1,+2..., (4)

and we have defined

w2
K= gso—kﬁ, (5) ,

. c . _
al)(x)= —ik[Aje ¥+ Bje K], (12
wherekg is the Bloch wave vector arid is the magnitude of €jw
the projection of the wave-vectdr on theyz plane, i.e.,kﬁ
=k§+ kf. Solving the eigenvalue problem for the Dirac-
comb model, we obtained that the coefficieAtsand B, of 0 c? Ko Cikox
Eq. (4) are related by4] agr(x)=— szlK,-[Aje “=Bje 7] (13
J
—ikgd —iKd P
B —C el-e (1-ia) (6 By the Bloch theorem, the normalization condition can be set
0 —jaekd 0 to involve only the field in the celh=0, namely,—d<x
<0, that is,
Also, the dispersion relation was found to be
— H - oo o —h
coskgd=cosKd— a(K)sinKd, 7) D ein(kB_k/B)d“‘ dyJ dzJ 2 1 JRCIY
n=—o — — —d
B ad % % 0 )
a(K)=75 K. (8) +J dyJ dzJ dx ezaﬁ,’*-a(k”}:a(k—k').
— oo —0o0 —hy
Equation (7) is an implicit equation for the frequency, 14

= w(Kg,K)). Equationg6) and(7) specify the normal modes

of the magnetic induction field. It is important to notice thatSubstituting Eq(11) into Eq.(14) and using the facts that
propagating solutions for the TM modes, that is, whagris
real, occur only ifK is real, too(unlike the TE modes, for
which K may be imaginary % o . ,
f dyf dzdl(ky—k)y+(k;—k)Z
IIl. MODE NORMALIZATION T

— 2 L’ !
In this section, a real superlatti¢each cell composed of =(2m)"a(ky=ky) ok k),

two layersj = 1,2 with dielectric constants; and widthsh)

is first treated. Then, in Eq$4) and (5) Ay, By, K, andeg "

must be replaced bg;, Bj, K;, ande;, respectively. in(ke—K.)d _ L
The seta, (r) must satisfy the following orthonormaliza- dn:z_oc erteel=2m (ke ke),

tion condition:

the & functions cancel out and E@L4) simplifies to

f dre(r)ag,(r)-a(r)=s(k—k’). 9

The vector potentiad(r) is related with magnetic induction Elf ; dx(apM(x)a(x) +aiP(xai(x)
Bk(r) by

0
2 +e f |, IX@P00a00 + 302 (0)
a(r) = —— VXBy(r). (10 i
e(Nw d
= . 15
In the Oth cell, substituting Eq3) in Eq. (10), we obtain (2m)3 19
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Substituting Eqs(12) and(13) into Eq.(15) and integrating  Applying the § limit e,h,— gd to the last equation and drop-
we get ping the index “1” we get

1| w? ) )
—1 5 €1(d—ha)(|Aq|*+[B4[?)
€1{cC
2 2

K
o, e 2iKahy _g2ikyd ?g|A—B|2+ w—25(|A|2+|B|2)
+2(KE—KDRY ABI— c
1_e—2in
2 2 *
+ _|_€2h2(|Az|2+|Bz|2) 2iKd
€| c?
w’e a7
1_e—2iK2h2 = 34
2
+2(k2—K§)Re{AZB’2‘ TKzH (2m)°c
4
_ w_d (16  Then, using Eq(6), after considerable algebra, E@.7) is
(2m)3c? reduced to

2 sinKd+ a cosKd+ sinkgd

w
2= 18
Al 16m3c? L 2gK%c?  a | . cds |14 2gK?c? «d 18
W m Sin w a COS
|
IV. TM EMITTED POWER dwy
) . . . dekp=ro—, (22
We consider that the medium between the barriers is |V
vacuum, and then the field that interacts with the dipole is
given by Eq.(11) with j=1 ande;=1. [For a dielectric 5
medium (,>1) Eq. (1)) is not valid, since one has to use dr— ~ |14+ 0_"5 d 23)
thelocal field]. Then we can drop the layer ind¢x 1. Also, = K| K-
without losing any generality, we suppose that the dipole ¢
position is
We calculatg V| anddkg/dk from Eq.(7), and then Eq.
Fo=XoX+ Yoy 202, —d<xo<O, (19 (2D is found to be
and that it is parallel to thexy plane, with its orientation 5 olF|
represented by d°k= —c2|K sinked| kjdkd¢dw, (24)
= Sin X+ cosyy. (20) g
F= 1+§ sinKd+ « cosKd. (25

Now, let us define the volume differential knspace as in
Fig. 4 of Ref.[5], - . . : .
Substituting Eq.(24) into Eg. (1) and integrating with
respect tow then gives

3k =kd g dxp. 21)
. . . T wgu? -, |Fl
Here,d«, anddx,, are the differential tangential and normal pP= 5 f dedk; kjla(ro)- p 2'—kd .
segments of the equifrequency surface. They can be ex- c K sinkegd| g
pressed as (26)
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Next, we substitute Eqg11), (19), and (20) into Eg. (26) ) 1
and then integrate with respect #a This results in | () =Kfsiry+ §K2C032¢, (28
2732 u? |F| 1
_ 2 2 — 1 2cirlf— —K?2
P= ” fdk“ k|||KSinde|I(¢)(|A| +|B|?) J(p)=ki{sirty 5K cos . (29)
+J()2Rg AB* 2KX0), (270 Then, using Eqs(18) and(6), Eq. (27) becomes
|
2 F I sinKd+ a cosKd) —J cosK (d+ 2x
p_ M woJ’ dig K | | (P)( a )= ( o) 30
4 K sinkgd| a 2K\ K2c?
—K—d+—2 sinKd+| 1+ >— | acosKd
) )

This is the final result for the power emitted by the electricp(Q,, 7/2)

dipole. The integration is carried out in terms of a single
variable k| for values ofkg that lie on the equifrequency
surfacewg. There is contribution to the emitted power only
in those regions ok wherekg is real (in Ref.[4], we have
plotted several equifrequency surfaceshere are two im-
portant orientations of the dipole: when it is parallel to the
“barriers” (#=0) and when it is perpendicular to the “bar-
riers” (= 7/2). The power emitted for any other orientation
of the dipole can be represented as a linear combination of
the powers emitted for these two basic orientations, that is

P(wq, ) =CoSyYP(wg,y=0)+sifyP(wq, = ml2).
(3D

It is convenient to work with the normalized dipole position
Xo/d= &g, the normalized frequencyd/c=(}, the normal-
ized components of the wave vectdtzgd=«kg, Kd=«,

malization scheme in E430), we have

_ 3 f K|||F|
= 3 dK” -
405 |k sinkg|

Sink+ @ COSk — a COSk(1+2&))

X
“I 2?9 a) . 2k%g
1+ — —|sink+| 1+ a COSK
QZ K 2
(33
F=(1+9/2)sink+ a cosk, (39
a=gkl2. (35

V. DIPOLE PARALLEL TO “BARRIERS” (=0)

In this section, we compute the normalized power as
kjd= x|, and the power normalized to the power emitted bygiven by Eq.(32). The power emitted by the dipole as a
a dipole in free_spac@N:(303/ng2)P_ Using this nor-  function of the frequency is continuous, but it presents slope

discontinuities(see Fig. 1. We can notice that such singu-

larities occur for frequencies coinciding with a band edge at
k=0 (on-axis propagation since the group velocity for
suchk is zero (V,w=0), see Eq(23) of Ref.[4]. These are

Pn(Q0,0)
3J KH|F|
= dk -
8032 Ik sinkg]
y Sink+ @ oSk + a COSKk(1+2&))
K 1
2k%g a) . 2k? )
1+ ——|sink+| 1+ a COSK
02« 02
(32

known as van Hove singularities or as analytical critical
points. As can be expected, the slope discontinuities are
much more pronounced for the larger value of the grating
strength =0.9). Nevertheless, for certain band-edge fre-
quencies atk=0 the slope discontinuities are missing.
Mathematically, the van Hove singularities are associated
with x| and sinkg both vanishing in the last factor of Eqg.
(32), namely, a singularity of the 0/0 type.

In order to gain some understanding of the role of the
dipole-field interaction, now we analyze the case when the
numerator of Eq.(32) vanishes. For on-axis propagation
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0.30 the dipole position is given by the ratio of an odd and an
0.25 even numbefé|<1. For a givené, this corresponds to the
0.20 normalized frequencie$)=mn=m(m+1/2)/|¢|, with the
0.15 understanding thatnf+ 1/2)/¢| is integer. For example, if
S 882 (@ t=-1/2 —g—0.9 the dipole is located midway between two barrieés;
o T —1/2, we haveQ)=7(2m+1); in Fig. 1(a), the slope dis-
5 0352 2% 4r 6m 8n 10m 12 l4m continuities are indeed absent far= 7,37,57, 77, .. .,. In
2 0.30 the case ofé=—1/3, the factor(37) doesnot vanishes for
g 838 any m, and then the discontinuities are presgs¢e Fig.
: 1(b)]. By using the same relation, f@gr=—1/4 the disconti-
T 0.15
flj 0.10 401 nuities are absent whed=27,67,107, ..., as we can no-
= 888 &=-13 g 09 tice in Fig. 1(c). The absence of the aforementioned discon-
€ " or 2n 4n 6m 8t 10m Lam ldm tinuities is responsible for the distinctive repetitive patterns
o that can be seen in Figs(dl, 1(b), and 1c). This behavior is
Z

a consequence of the electric field having a node at the di-
pole position for certain modes. Then the plots shown in Fig.
1 follow a quasi periodic pattern whose shape is determined
by the dipole position.
In the limit g—0, Eq.(32) can be easily integrated, re-
Or 2r 4r 6m 8m 10m 127 l4nm sulting that the normalized power is a constant equal to 1/4.
: In this limit, the SL is reduced to free space and we see that
Normalized Frequency wad/c the TM modes contribute 1/4 of the radiated power. Obvi-
FIG. 1. Normalized power emitted by a dipole oriented parallelously, the rest of the normalized power, that is 3/4, is con-
to the barriers as a function of the normalized frequendyc for  tributed by the TE modes. This, indeed, has been found in |
g=0.1 andg=0.9 and three dipole positions. The width of the for #=0. We then define the “enhancement” a®\(
lower (upped box on the frequency axis indicates the extensions of—0.25)/0.25=-4Py— 1, obviously for Py>0.25. If, on the
the allowed bands fog=0.1 (g=0.9). (a) For é&=—1/2 there are  other handPy<0.25 then there is a “reduction” £ 4Py.
no slope discontinuities abd/c=mw(2m+1), m=1,2 ... .(b) For The enhancement of the normalized power is moderate
¢&=-1/3 there are slope discontinuities abd/c=mwz, m  for both values ofg. In Fig. 1, forg=0.1, the largest en-
=1,2....(c) §é=—1/4, there armo slope discontinuities abd/c  hancement is an increase of about 25% with respect to free
=2m(2m+1), m=0,1,2.... space and is attained at the frequencies that correspond to the
band edges. Fog=0.9, the maximum enhancement is an
(k|=0, k=, where we drop the subscript “0” hencefojth  increase of just 10% av=0. The maximum reductions ob-

this occurs when tained are 85 and 30% of the free space value 1/4gfor
inQ 1 =0.9 andg=0.1, respectively.
sin . - .
_ It can be proved that, in the limit of low frequencies,
=—-{cosQ)+cog§ QA (1+2¢)]}. 36
gQ 2{ L Ol 39 —0, the normalized power is a constant that depends only

on theg parameter, given by
In Ref.[4], it was shown that the lower band edges for on-

axis propagation are defined Y= wd/c=mn, wheren 3(1+q)3? 1
=(0,1,2 .. .) is theband index, and are thus independent of Pn(0,0= ( g)2 1- \/ﬁafCtalk/Znggz :
g. For such band-edge frequencies@Qi 0, so the condition 4(29+97) 29+9 (39)
(36) reduces to
In this long-wavelength limit, the power obviously cannot
cognm§)=0. (37 depend on the dipole’s position, the SL becoming an effec-

tively homogeneous medium. To obtain the above equation,
This factor can be traced to the transverse pagi0fo), Eq.  we use the fact thak<1; thus, the following approxima-
(13) (the longitudinal part vanishes féj=0). Because, un- tions can be done in Eq32): cosk~1, sink~«, cosk(1
derthelconditions consider@dﬁ—B, we see thadyr(Xo) IS +28~1, F~(1+g)«, and sinkg~\1+gx. The ensuing
proportional to cos{wé). Now, in the Coulomb gauge that gefinite integral, containing onlg as a parameter, can be
we are employing, the electric field &(r) =i(w/c)a(r) [1];  solved. As a result, Eq(38) is obtained. The normalized
hence, the factor(37) corresponds to the electric field power as a function of the grating strengtincreases until it
squared in the dipole field interactida (ro) - |2 in Eq. (1). reaches its maximum valuey~0.28 atg~1.172. This is a
When this factor vanishes, the dipole cannot interact with themall enhancement with respect to free-space value 0.25. For
field, and then the contribution of the modte=0 to the g>1.172, the normalized power decreases, and it tends to
emitted power is zero. As a consequence, the aforementionero asg— . We have computed Eq38) for g=0.9 and
slope discontinuities i?(w) do not arise at the lower band for g=0.1, resulting in 0.279 and 0.257, respectively, for the
edges for on-axis propagation. The express®f vanishes normalized power. These results are in agreement with the
if |£&=(2m+1)/(2n), wherem=0,1,2 ..., that is,when values shown in Fig. 1.

046613-5



ZURITA-SANCHEZ, S;ANCHEZ, AND HALEVI PHYSICAL REVIEW E 66, 046613 (2002

0.40 g=0.9 y=0
0.36- —§,=-0.1

——¢g,=-107

0.324
=z ]
0.28 {
0.24-

0.20
0.16 4
0.124

Normalized Power P

0.08 1
0.04 1

oooMLLLL LTI ]
Onr 2r 4n 6m 8m 10m 12w 14w
Normalized Frequency wd/c

Or 2n 4w 6m 8m 10w 12w 14w

Normalized Frequency wnd/c
FIG. 2. Normalized power emitted by a dipole located close to
one of the barriers&: —-0.1 andfoz — 1077) as a function of the FIG. 4. As F|g 2, hOWeVer, W|th the d|p0|e Oriented perpendicu-
normalized frequencwd/c for g=0.9. The dipole is oriented par- lar to the barriers = /2).
allel to the barriers y=0). The width of box on the frequency axis
indicates the extension of the allowed bandsder0.9.

2.0 0.85
1.8 —g=0.1
1.6 §0= -1/2 ——g=0.9
1‘2‘ 0.80
1.0 z
=z 08 T T T T T T T T T T T T T T T 1 0; O 75_
o 5% 2t 4n 6m St 10m 121 l4n oV
5 29 3
. =0.1
3 16 g=-13 977 o 570
O 44 9=> 2
3 12 N
N 19 © 0.65
(_U T 1 M 1 1 M 1 1 T 1 1 g
£ Or 2n 4mn 6m 8n 10w 12n 1l4m o)
5 1.8 Z 1.60-
Z 1.6 §=-1/4 ——g-0.1

1.2 0.55
1.0 On 2n 4n 6m 8n 107 12¢ 14x
On 2r 4n 6m 8m 10w 12x 14w Normalized Frequency wd/c
Normalized Frequency wd/c FIG. 5. The normalized average power per dipole versus the

normalized frequencyd«d/c) for g=0.1 andg=0.9. The width of
FIG. 3. Normalized power emitted by a dipole oriented perpen-the lower(uppe) box on the frequency axis indicates the extension
dicular to the barriers as a function of the normalized frequencyof the allowed bands fog=0.1 (g=0.9). The power radiated by
wd/c for g=0.1 andg=0.9 and three dipole positions. The width the gas of dipoles is obtained by multiplying by the number of
of the lower(uppe) box on the frequency axis indicates the exten- dipoles. We have slope discontinuities at all the frequencies that
sion of the allowed bands fgg=0.1 (g=0.9). correspond to the band-gap eddés on-axis propagation
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As the dipole approaches one of the barriers, there is @his was expected since, for this orientation of the dipole,
further enhancemerfup to 50% of the normalized emitted there is no contribution to the power by the TE modes as
power; however, this enhancement is not related to the res@ommented above.
nant effect found for the TE modésee Fig. 3 of ). This is In the limit of low frequencies ®—0), the normalized
shown in Fig. 2 for the dipole positions=—0.1 andé= power is again a constant independent of the dipole’s posi-
—10 7 with g=0.9. This difference of behavior can be ex- tion, namely,
plained by comparing the dispersion relations of the TE and
the TM modes. In the case of TE polarization, the propaga-

tion modes can exhibit evanescent behavior just outside the 3Ji+g [ (1+09)?
barriers, which gives rise to the enhancement. On the otherPy(0,7/2)= 5 2arctarx/Znggz—l .
hand, for TM polarization, such evanescent modesnate 2(29+9°) \ V29+g

allowed for the Dirac-comb model. (39
We obtain this equation by applying the same approxima-
tions described in the preceding section in E2@). For g
Computing Eq(33), we find that the functio®Py(w), (as =0.1 andg=0.9, this formula for the normalized power
for =0) is continuous, but it presents slope discontinuitiesgives 1.008 and 1.007, respectively. This is approximately in
(see Fig. 3 The normalized power is strongly modified for accord with the intercepts on they axis in Fig. 3. The
not very large frequencie<X<~5). We can see from Fig. reason that the low-frequency result is different than(86)
3 that, in this range, ag increases, the power is enhancedfor the /=0 case, is that in this long-wavelength limit the
considerably. We recall from | that a perpendicular dipoleSL behaves like a uniaxial crystakith its optical axis par-
cannot emit TE radiation. Therefore, the enhancement relallel to the SL axig having form birefringence.
tive to free space is simply—1 (for Py>1). Forg=0.9, In Fig. 4, the normalized emitted power is shown tpr
the greatest enhancement is about 90%éer—1/2 andé ~ =0.9 and for the dipole’s position close to the barrige(
= —1/3, and about 80% fof= — 1/4. On the other hand, for —0.1 and¢=—10"7). Here, we notice that the maximum
g=0.1, the maximum enhancement is around 10%. The noenhancement actually decreases as the dipole approaches the
malized power for greater frequencie® £5m) fluctuates barrier.
around 1.00.
In Sec. V, forgy=0, we saw that some of the slope dis- VIl. DIPOLAR RADIATION BY A GAS
continuities arise at the band edges for on-axis propagation. . )
For = /2, the slope discontinuities in the power spectrum We consider a gas formed by a set of randomly oriented
are still present, however, they are very weak. This can béipoles, which are also randomly distributed in the range
understood from the fact that, for this dipole orientation, the—d<x<0, and do not interact among each other. We obtain
dipole cannot couple to the field modes for on-axis propagathe average, ovey and &, of the power radiated by one
tion. This is so becausg(r,) is perpendicular to the SL axis dipole. The squared cosines and sinesgsdh Egs.(28) and
for kj=0 [see Eq(12)]. Mathematically, this is revealed by (29) have the spatial average of 1/3 and 2/3, respectively.
the factork; in Eq. (12), which weakens the singularities. ~ The cosine function of Eq(30), whose argument involves
Equation(33) can be easily integrated in the lingt=0,  Xo. averages to sit(d)/Kd. As a result, the average normal-
with the result that the normalized power is equal to oneized powerPy () per dipole is

VI. DIPOLE PERPENDICULAR TO “BARRIERS” ¢=m/2

— 1 K |F| (4K2+ KZ)(SinK+aCOSK)—C!(4K2+ Kz)sinK/K
_ I [ I
PN(Q)— 3 K” . 2 > (40)
8(Q) |k singl 2k°g  a) . 2k°g
1+ ——|sink+| 1+ a COSk
0?2 2
|
In Fig. 5, we plot the total average power radiated per dipole VIII. CONCLUSION

versus the normalized frequencg_;ocﬂ/c) (.)f oscilllation. The . We have presented the calculation of the power emitted
total power radiated by the gas is obtained simply by muItl—by a dipole for several dipole positions, for the grating
plying by the number of dipoles. Since there is no preferensirengthsy=0.1 andg=0.9, and for the two basic orienta-
tial orientation or localization of the dipoles, all the slope tions of the dipole /= 0,7/2). We also presented the power
discontinuities are present at the frequencies that corresporghitted by a gas formed by randomly oriented and randomly
to the band edges. The grating strength assumes the valugistributed dipoles. We conclude that the effects of interest
g=0.1 andg=0.9. for controlling the power emitted by a dipole occur at fre-
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quencies that correspond to the band-gap edigeson-axis  propagation. Also, for fractional dipole positions certain dis-
propagatiol, since there the field-dipole interaction is continuities are absent.
strongly modified. Roughly speaking, the greatest enhance- The total emitted power is obtained by summing the TE
ments or inhibitions of radiated power occur for relatively [Eq. (32) of I] and the TM[EQq. (31)] contributions
low frequencies() is less than~5w. When the dipole is
parallel to the barriers, the effects caused by the SL on the P(w,¢)=Pre(w, )+ Pry(w, )
radiation are more pronounced. _
There is no remarkable power enhancement for dipole =[Pre(®,0)+Pry(w,0)]cosy
positions very close to a barrier, as was found for the TE +Pru(w, /2)sirty. (42)
polarization modes. This is true because, according to Eq.
(7), K must be real, so quasiresonant excitation of evanescemtherefore, if the dipole is perpendicular to the barriegs (
modes is not possible as in I. Nevertheless, such absence ef7/2), the emitted radiation is entirely TM polarized and
evanescent modes is a peculiarity of the Dirac-comb SLthe corresponding power is given by E83) and Figs. 3 or
these modeare present in a realistic description of the SL. 4.0n the other hand, for a dipole that is parallel to the bar-
In the |0W -frequency limit, the power emitted is propor- riers (4=0), the total emitted power is given by the expres-
tional to w* as for free-space emission and it is independention above in the square brackets, and it has both TE and TM
of the dipole’s position. However, it depends on the gratingcomponents. Also, for a dipole gas the total power is ob-
strengthg and the dipole’s orientatiost. The latter feature is  tained by adding the Figs. 4 of | and Fig. 5 of this paper.
a manifestation of birefringence. The power emitted by a gas
fc.)rmed_by.d.ipoles is also strongly modified, pre.senting slopg ACKNOWLEDGMENTS
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